Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system.
Evidence for VIP influences on immune function comes from studies demonstrating VIP-ir nerves in lymphoid organs in intimate anatomical association with elements of the immune system, the presence of high-affinity receptors for VIP, and functional studies where VIP influences a variety of immune responses. Anatomical studies that examine the relationship between VIP-containing nerves and subpopulations of immune effector cells provide evidence for potential target cells. Additionally, the presence of VIP in cells of the immune system that also possess VIP receptors implies an autocrine function for VIP. The functional significance of VIP effects on the immune system lies in its ability to help coordinate a complex array of cellular and subcellular events, including events that occur in lymphoid compartments, and in musculature and intramural blood circulation. Clearly, from the work described in this chapter, the modulatory role of VIP in immune regulation is not well understood. The pathways through which VIP can exert an immunoregulatory role are complex and highly sensitive to physiological conditions, emphasizing the importance of in vivo studies. Intracellular events following activation of VIP receptors also are not well elucidated. There is additional evidence to suggest that some of the effects of VIP on cells of the immune system are not mediated through binding of VIP to its receptor. Despite our lack of knowledge regarding VIP immune regulation, the evidence is overwhelming that VIP can interact directly with lymphocytes and accessory cells, resulting in most cases, but not always in cAMP generation within these cells, and a subsequent cascade of intracellular events that alter effector cell function. VIP appears to modulate maturation of specific populations of effector cells, T cell recognition, antibody production, and homing capabilities. These effects of VIP are tissue-specific and are probably dependent on the resident cell populations within the lymphoid tissue and the surrounding microenvironment. Different microenvironments within the same lymphoid tissue may influence the modulatory role of VIP also. Effects of VIP on immune function may result from indirect effects on secretory cells, endothelial cells, and smooth muscle cells in blood vessels, ducts, and respiratory airways, Influences of VIP on immune function also may vary depending on the presence of other signal molecules, such that VIP alone will have no effect on a target cell by itself, but may greatly potentiate or inhibit the effects of other hormones, transmitters, or cytokines. The activational state of target cells may influence VIP receptor expression in these cells, and therefore, may determine whether VIP can influence target cell activity. Several reports described in this chapter also indicate that VIP contained in neural compartments is involved in the pathophysiology of several disease states in the gut and lung. Release of inflammatory mediators by cells of the immune system may destroy VIP-containing nerves in inflammatory bowel disease and in asthma. Loss of VIPergic nerves in these disease states appears to further exacerbate the inflammatory response. These studies indicate that altered VIP concentration can have significant consequences in terms of health and disease. In addition, the protective effects of VIP from tissue damage associated with inflammatory processes described in the lung also may be applicable to other pathological conditions such as rheumatoid arthritis, anaphylaxis, and the swelling and edema seen in the brain following head trauma. While VIP degrades rapidly, synthetic VIP-like drugs may be developed that interact with VIP receptors and have similar protective effects. Synthetic VIP-like agents also may be useful in treating neuroendocrine disorders associated with dysregulation of the hypothalamic-pituitary-adrenal axis, and pituitary release of prolactin. Copyright (C) 1996.
Vasoactive intestinal peptide (VIP) belongs to an ever growing family of neuropeptides with immunomodulatory functions. VIP-containing nerve fibers are present in both primary and secondary lymphoid organs, frequently in close proximity to immune cells. In addition, several types of immune cells, including T lymphocytes may function as local VIP sources in the lymphoid microenvironment. VIP released from neuronal and/or non neuronal sources exerts immunomodulatory effects through direct binding to VIP receptors (VIP- Rs), which are expressed on most immune cells. The existence of lymphocytic VIP-Rs has been demonstrated initially through binding studies, and more recently, through molecular biology technology. Both VIP-R1 and VIP-R2, which express high affinity for VIP and related neuropeptides such as the pituitary adenylate cyclase activating peptide (PACAP), are present on lymphocyte subsets, and recent reports suggest that whereas VIP-R1 is expressed constitutively, VIP-R2 expression is induced upon lymphocyte activation. Although VIP affects a variety of immune functions, its primary immunomodulatory function seems to be anti-inflammatory in nature. Whereas a rapid inflammatory response is essential for the ultimate elimination of foreign antigens, its intensity and duration have to be strictly controlled to avoid extensive tissue damage. In this respect, neuropeptides with anti- inflammatory functions such as VIP or the structurally related PACAP, timely released within the lymphoid organs, could play an important physiological role in the downregulation of the immune response. Cytokines, soluble products of immune cells, play major roles in lymphocyte development, activation, and differentiation. As most cytokines are functionally pleiotropic, redundant, and interdependent, local interactions within the cytokine-neuroendocrine network have significant impact on cytokine production and function. Therefore, the immunomodulatory activities of VIP could be mediated, at least partially, through effects on the production of cytokines. The purpose of this article is to review the existing information regarding the VIP modulation of cytokine expression in immune cells. Both VIP and PACAP downregulate the expression of IL-2 mRNA and protein in T cells activated through the T cell receptor, through reducing both the stability and the de novo transcriptional rate of the IL-2 message. Reduction in the amount of IL-2 generated by the activated CD4 T cells impacts on both T cell proliferation and on further sequential cytokine production. This is indeed the case with IL-4, which is affected by VIP indirectly, through inhibition of IL-2. In contrast, the inhibitory effect of VIP and PACAP on IL-10 production proceeds through a direct transcriptional event. In contrast to IL-2 which functions solely as a proinflammatory cytokine, IL-4 and IL-10 act as pro- or anti-inflammatory cytokines, depending on their involvement in specific immune responses. Therefore, depending on interactions with the local cytokine network, VIP and related neuropeptides may contribute significantly to controlling the amplitude and timing of the inflammatory response to foreign antigens. Although the role of VIP and related peptides on T cell development has not been investigated yet, the presence of VIP and VIP-Rs in the thymus, and their effect on thymic cytokine production, suggests that VIP and/or PACAP released locally within the thymic environment could also affect T cell development, and therefore participate in the generation and maturation of immune cells.
The nervous and endocrine systems modulate the immune system functions through releasing neurotransmitters, neuropeptides and endocrine hormones as they regulate the other physiological functions. The immune system in turn communicates with the nervous and endocrine systems through secreting immunocompetent substances. In this report we review our concepts and evidence concerning the immunoregulatory role of acetylcholine (ACh) and monoamine neurotransmitters which include noradrenaline (NA), 5-hydroxytryptamine (5-HT) and dopamine (DA). The immunoregulatory role comprises two aspects, the modulation of immune functions by neurotransmitters and the effect of the immune system on nervous system functions. The inhibition of ACh biosynthesis in the central nervous system (CNS) caused the enhancement of the humoral immune response of rats to sheep red blood cells (SRBC); by contrast, the inhibition of acetylcholinesterase (AChE) activity in the CNS resulted in the suppression of the immune response. It seems that ACh in the brain plays an immunoinhibitory role, The role can be blocked by atropine, a muscarinic antagonist, but not by hexamethonium, a nicotinic antagonist, During the humoral immune response (days 3-6 after SRBC injection), activity of AChE in the hypothalamus and hippocampus was strikingly lower, It is suggested that a functional connection is present in the ACh of the brain and the immune system. In vitro, ACh at 10(-9) to 10(-4) mol/l dose range significantly strengthened the spleen cell proliferation induced by concanavalin (Con A). The action of ACh only occurred either before or just after T lymphocytes were activated through muscarinic cholinergic receptors. In vivo, the depletion of monoamine neurotransmitters or only NA in the CNS caused the impairment of the anti-SRBC response of rats, During the phases of days 2-7 post-immunization, the metabolic alterations of NA, 5-HT and DA emerged in the CNS and the lymphoid organs of rats, which mainly exhibited that in the peak periods of the antibody response, the metabolism of the monoamine neurotransmitters in the hypothalamus and hippocampus was markedly increased, but NA content in the spleen and thymus was significantly decreased. These results provide evidence for the bidirectional information exchange network between the monoamine neurotransmitters and the immune system. Exposure to NA (at 10(-8)-10(-5) mol/l concentration range) in vitro was shown to inhibit the Con A-induced proliferation of the rat spleen cells, This effect of NA was related to the early events involved in the initiation of T cell proliferation and was mediated by either alpha- or beta- adrenergic receptors. The evidence that altering 5-HT level in the central or peripheral nervous systems through various ways of administering the drugs to regulate 5-HT biosynthesis led to the variations of the antibody response, and that cyproheptadine, an antagonist of serotoninergic receptors, can block the action of 5-HT show that 5-HT may exert an immunoinhibitory effect, which appears to be mediated via the peripheral mechanism to relate to the 5-HT receptors. However, the antibody response can cause changes in 5-HT metabolism in the CNS. The possible reasons for these results are discussed. Collectively, the antibody response arouses the metabolic variations of ACh, NA, 5-HT and DA in the central and peripheral nervous systems and then, these alterations can in turn influence immune function through neurotransmitter relevant receptors present on the immunocytes. The purpose of this interaction is most likely to maintain the homeostasis of the immune and other physiological functions. Copyright (C) 1996 Elsevier Science Ltd.
Neuropeptides have recently been shown to modulate the immune response. Vasoactive intestinal peptide (VIP) released from nerve endings and from immune cells modulates the mobility and adherence of lymphocytes and macrophages, phagocytic cell functions (phagocytosis and free radical production), the lymphocyte proliferative response, lymphokine and immunoglobulin production and the natural killer cell activity, with opposite effects in vitro on these immune cell functions. The VIP receptor heterogeneity and the different action mechanisms of VIP-mediated immunoregulation could explain, at least in part, the different VIP effects observed on lymphoid and phagocytic cells. The evidence supports the theory that VIP acts not as an inhibitor, but as a modulator of immune functions, as previously thought, and that this neuropeptide may play a relevant role in vivo.
Cytokines play a crucial role in autoimmune thyroid disease (ATD) through various mechanisms. They are produced in the thyroid by intrathyroidal inflammatory cells, in particular lymphocytes, as well as by the thyroid follicular cells (TFC) themselves and may thus act in a cascade to enhance the autoimmune process (Fig.l). Cytokines upregulate the inflammatory reaction through stimulation of both T and B cells, resulting in antibody production and tissue injury. In addition, intrathyroidal cytokines induce immunological changes in TFC including enhancement of both major histocompatibility complex (MHC) class I and class II molecule expression, and upregulation of adhesion and complement regulatory molecule expression. Cytokines can also modulate both growth and function of TFC and have a role in extrathyroidal complications of ATD, most importantly thyroid-associated ophthalmopathy (TAO), where they induce fibroblast proliferation and enhance the production of glycosaminoglycans (GAG), resulting in proptosis and the other clinical features of the disease. In addition to these effects, exogenous administration of cytokines has been associated with impairment of thyroid function ranging from the appearance of autoantibodies
Experimental evidence is accumulating showing that vasoactive intestinal peptide (VIP) acts as an immunoregulatory peptide. Findings from our laboratory and others indicate that cells of the immune system are able to produce VIP. We have detected immunoreactivity for VIP in lymphocytes by immunohistochemical methods at specific locations of both central and peripheral lymphoid organs. Double immunofluorescence staining and flow cytometry analysis indicate that both T and B lymphocytes contain VIP that has been proved to be mostly VIP by high-performance liquid chromatography and radioimmunoassay. VIP has been also demonstrated by 'in situ' hybridization and reverse transcription followed by polymerase chain reaction. We have also detected induction of VIP in splenic lymphocytes after mitogenic stimulation. Lymphocytes should be sensitive to the endogenously produced VIP because we have also detected VIP receptor expression in different populations of lymphocytes. All this evidence indicates that VIP is an endogenous autocrine modulator of immune function.
We have demonstrated that human brain capillary endothelial (HBCE) cells, unlike umbilical or aortic endothelial cells are permissively infected by HIV. HIV infection of HBCE cells is noncytolytic and is mediated by a CD4- and GalCer-independent mechanism, implying that HBCE cell tropic strains utilize a unique receptor. The V3 loop of gp120 appears to be important in this reaction. T-cell tropic but not brain-derived macrophage tropic HIV strains selectively infect brain endothelium suggesting that T-cell tropism is important for HIV entry through the blood-brain barrier (BBB). The ability of HIV to infect cells that compose the BBB implies that the virus may be directly involved in the BBB dysfunction observed in AIDS patients. HIV infection of HBCE cells may allow the flow of cytokines or toxic metabolites from the circulating blood into the brain parenchyma either by disrupting tight junctions or by altering the ability of the cells to regulate transport of substances across the BBB by transcytosis. HIV infection may also result in endothelial cell-induced astrocytosis by release of cytotoxic substances or modulation of abluminal surface antigens which contact astrocytic foot processes. Finally, HIV infection of the brain endothelium could facilitate virus entry to the CNS either by infection of HBCE cells or via entry of HIV-infected leucocytes. The establishment of our in vitro HIV-HBCE cell system will allow us to explore the potential mechanisms which mediate AIDS dementia.