Purpose This paper aims to present a new method of real-time monitoring of thermal profiles applied in vapour phase soldering (VPS) reflow processes. The thermal profile setting is a significant variable that affects the quality of joints. The method allows rapid achievement of a required thermal profile based on software control that brings new efficiency to the reflow process and enhanced joint quality, especially for power electronics. Design/methodology/approach A real-time monitoring system based on computerized heat control was realized in a newly developed laboratory VPS chamber using a proportional integral derivation controller within the soldering process. The principle lies in the strictly accurate monitoring of the real defined reflow profile as a reference. Findings Very accurate maintenance of the required reflow profile temperature was achieved with high accuracy (± 2°C). The new method of monitoring and control of the reflow real-time profiling was verified at various maximal reflow temperatures (230°C, 240°C and 260°C). The method is feasible for reflowing three-dimensional (3D) power modules that use various types of solders. The real-time monitoring system based on computerised heat control helped to achieve various heights of vapour zone. Originality/value The paper describes construction of a newly developed laboratory-scale VPS chamber, including novel real-time profiling of the reflow process based on intelligent continuously measured temperatures at various horizontal positions. Real-time profiling in the laboratory VPS chamber allowed reflow soldering on 3D power modules (of greater dimensions) by applying various flux-less solder materials.
Purpose This paper aims to present a review of the recent developments in vapour phase soldering (VPS) technology. This study focuses on the following topics: recent developments of the technology, i.e. soft and vacuum VPS; measurement and characterization methods of vapour space, i.e. temperature and pressure; numerical simulation of the VPS soldering process, i.e. condensate layer and solder joint formation; and quality and reliability studies of the solder joints prepared by VPS, i.e. void content and microstructure of the solder joints. Design/methodology/approach This study was written according to the results of a wide literature review about the substantial previous works in the past decade and according to the authors’ own results. Findings Up to now, a part of the electronics industry believes that the reflow soldering with VPS method is a significant alternative of convection and infrared technologies. The summarized results of the field in this study support this idea. Research limitations/implications This literature review provides engineers and researchers with understanding of the limitations and application possibilities of the VPS technology and the current challenges in soldering technology. Originality/value This paper summarizes the most important advantages and disadvantages of VPS technology compared to the other reflow soldering methods, as well as points out the necessary further developments and possible research directions.
Purpose – The main advantages of vapour phase soldering are a non-oxygen environment, the elimination of overheating and the possibility of the vacuum application, which can guarantee undeniably higher quality of solder joints, especially as regards void formation. These features are less affected by the alloy composition. The paper aims to discuss these issues. Design/methodology/approach – The quality of solder joints made in two VPS options (with and without vacuum) was investigated in terms of voids formation. Solder alloys of 37%Pb63%Sn (PbSn) and 96%Sn3.5%Ag0.5%Cu (SAC 305) were applied to an etched Cu layer on a glass-epoxy substrate using the screen-printing method. 1206 SMD resistors were placed on the solder pads with a Quadra pick-and place machine. For the inspection of joint structure and void identification, 3D X-ray images of samples were taken using a computed tomography system with a 180 kV/15 W nanofocus. For comparison, traditional cross-sections of the samples were performed using a metallographic polisher. The cross-section analysis was done in a scanning electron microscope (SEM). To confirm the relevance of these data, a statistical analysis was carried out. Findings – The paper shows that alloy composition has less impact on the quality of joints as regards void formation. The tendency for a different arrangement of voids in a junction depending on the distance SMD element and the thickness of the solder layer was investigated using X-ray computed tomography. Originality/value – The use of 3D computed tomography for void investigation gives full information about the internal structure of the joint and allows for precise void identification. Vacuum application during the soldering allows significant voids elimination.
Purpose This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered Ni/Sn/Ni samples. Design/methodology/approach The Ni/Sn/Ni joints were obtained through ultrasonic-assisted soldering. The formation of IMCs, their composition, grain morphology and the fractured-surface microstructures from shear tests were characterized using scanning electron microscopy and energy-dispersive x-ray spectroscopy. Findings Without USV, a planar interfacial Ni3Sn4 layer was formed at the Ni/Sn interface, and a few Ni3Sn4 grains were distributed in the soldered joint. The morphology of these grains was needle-shaped. With USV, several grooves were formed at the interfacial Ni3Sn4 layer due to ultrasonic cavitation. Some deepened grooves led to “neck” connections at the roots of the Ni3Sn4 grains, which accelerated the strong detachment of Ni3Sn4 from the substrate. In addition, two types of Ni3Sn4 grains, needle-shaped and granular-shaped, were observed at the interface. Furthermore, the shear strength increased with longer USV time, which was attributed to the thinning of the interfacial IMC layers and dispersion strengthening from the Ni3Sn4 particles distributed evenly in the joint. Originality/value The novelty of the paper is the detailed study of the effect of USV on the morphology, size changes of interfacial IMC and joint strength. This provides guidance for the application of ultrasonic-assisted soldering in electronics packaging.
Purpose The purpose of this study is to investigate the addition of 0.05 Wt.% carbon nanotube (CNT) into the Sn-1.0Ag-0.5Cu (SAC) solder on the intermetallic (IMC) growth. Lead-based solders play an important role in a variety of applications in electronic industries. Due to the toxicity of the lead in the solder, lead-free solders were proposed to replace the lead-based solders. Sn-Ag-Cu solder family is one of the lead-free solders, which are proposed and considered as a potential replacement. Unfortunately, the Sn-Ag-Cu solder faces some reliability problems because of the formation of the thick intermetallic compounds. So the retardation of intermetallic growth is prime important. Design/methodology/approach The solder joint was aged under liquid state aging with soldering time from 1 to 60 min. Findings Two types of intermetallics, which are Cu6Sn5 and Cu3Sn were observed under a scanning electron microscope. The morphology of Cu6Sn5 intermetallic transformed from scallop to planar type as the soldering time increases. The addition of carbon nanotube into the SAC solder has retarded the Cu6Sn5 intermetallic growth rate by increasing its activation energy from 97.86 to 101.45 kJ/mol. Furthermore, the activation energy for the Cu3Sn growth has increased from 102.10 to 104.23 kJ/mol. Originality/value The increase in the activation energy indicates that the growth of the intermetallics was slower. This implies that the addition of carbon nanotube increases the reliability of the solder joint and are suitable for microelectronics applications.
Purpose The research on lead-free solder alloys has increased in past decades due to awareness of the environmental impact of lead contents in soldering alloys. This has led to the introduction and development of different grades of lead-free solder alloys in the global market. Tin-silver-copper is a lead-free alloy which has been acknowledged by different consortia as a good alternative to conventional tin-lead alloy. The purpose of this paper is to provide comprehensive knowledge about the tin-silver-copper series. Design/methodology/approach The approach of this study reviews the microstructure and some other properties of tin-silver-copper series after the addition of indium, titanium, iron, zinc, zirconium, bismuth, nickel, antimony, gallium, aluminium, cerium, lanthanum, yttrium, erbium, praseodymium, neodymium, ytterbium, nanoparticles of nickel, cobalt, silicon carbide, aluminium oxide, zinc oxide, titanium dioxide, cerium oxide, zirconium oxide and titanium diboride, as well as carbon nanotubes, nickel-coated carbon nanotubes, single-walled carbon nanotubes and graphene-nano-sheets. Findings The current paper presents a comprehensive review of the tin-silver-copper solder series with possible solutions for improving their microstructure, melting point, mechanical properties and wettability through the addition of different elements/nanoparticles and other materials. Originality/value This paper summarises the useful findings of the tin-silver-copper series comprehensively. This information will assist in future work for the design and development of novel lead-free solder alloys.
Purpose This paper aims to introduce a new indicative parameter of filling efficiency to quantify the performance and productivity of the flip-chip underfill encapsulation process. Additionally, the variation effect of the bump pitch of flip-chip on the filling efficiency was demonstrated to provide insight for flip-chip design optimization. Design/methodology/approach The filling efficiency was formulated analytically based on the conceptual spatial and temporal perspectives. Subsequently, the effect of bump pitch on filling efficiency was studied based on the past actual-scaled and current scaled-up underfill experiments. The latter scaled-up experiment was validated with both the finite volume method-based numerical simulation and analytical filling time model. Moreover, the scaling validity of scaled-up experiment was justified based on the similarity analysis of dimensionless number. Findings Through the scaling analysis, the current scaled-up experimental system is justified to be valid since the adopted scaling factor 40 is less than the theoretical scaling limit of 270. Furthermore, the current experiment was qualitatively well validated with the numerical simulation and analytical filling time model. It is found that the filling efficiency increases with the bump pitch, such that doubling the bump pitch would triple the efficiency. Practical implications The new performance indicative index of filling efficiency enables the package designers to justify the variation effect of underfill parameter on the overall underfill process. Moreover, the upper limit of scaling factor for scaled-up package was derived to serve as the guideline for future scaled-up underfill experiments. Originality/value The performance of underfill process as highlighted in this paper was never being quantified before in the past literatures. Similarly, the scaling limit that is associated to the scaled-up underfill experiment was never being reported elsewhere too.
Purpose Stencil cleaning is an important operation in solder paste printing process. Frequent cleaning may interrupt printing process and increase idle time, as well as loss for performing cleaning. This paper aims to propose a method to optimize the stencil cleaning time and reduce unnecessary cleaning operations and losses. Design/methodology/approach This paper uses a discrete-time, discrete-state homogeneous Markov chain to model the stencil printing performance degradation process, and the quality loss during the stencil printing process is estimated based on this degradation model. A stencil cleaning decision model based on renewal reward theorem is established, and the optimal cleaning time is obtained through a balance between quality loss and the loss on idle time. Findings A stencil cleaning decision model for solder paste printing is established, and numerical simulation results show that there exists an optimal stencil cleaning time which minimizes the long-term loss. Originality/value Stencil cleaning control is very important for solder paste printing. However, there are very few studies focusing on stencil cleaning control. This research contributes to developing a model to optimize the stencil cleaning time in solder paste printing process.
Purpose This paper used a novel technique, which is thermo-compression bonding, and Sn-1.0Ag-0.5Cu solder to form a full intermetallic compound (IMC) Cu3Sn joints (Cu/Cu3Sn/Cu joints). The purpose of the study is to form high-melting-point IMC joints for high-temperature power electronics applications. The study also investigated the effect of temperature gradient on the microstructure evolution and the growth behavior of IMCs. Design/methodology/approach In this paper, the thermo-compression bonding technique was used to form full Cu3Sn joints. Findings Experimental results indicated that full Cu/Cu3Sn/Cu solder joints with the thickness of about 5-6 µm are formed in a short time of 9.9 s and under a low pressure of 0.016 MPa at 450°C by thermo-compression bonding technique. During the bonding process, Cu6Sn5 grew with common scallop-like shape at Cu/SAC105 interfaces, which was followed by the growth of Cu3Sn with planar-like shape between Cu/Cu6Sn5 interfaces. Meanwhile, the morphology of Cu3Sn transformed from a planar-like shape to wave-like shape until full IMCs solder joints were eventually formed during thermo-compression bonding process. Asymmetrical growth behavior of the interfacial IMCs was also clearly observed at both ends of the Cu/SAC105 (Sn-1.0Ag-0.5Cu)/Cu solder joints. Detailed reasons for the asymmetrical growth behavior of the interfacial IMCs during thermo-compression bonding process are given. The compound of Ag element causes a reduction in Cu dissolution rate from the IMC into the solder solution at the hot end, inhibiting the growth of IMCs at the cold end. Originality/value This study used the thermo-compression bonding technique and Sn-1.0Ag-0.5Cu to form full Cu3Sn joints.
Purpose The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows. Design/methodology/approach The solder balls with diameters from 250 to 760 µm were mounted on the copper-clad laminate by 1-5 reflows. The strength of the solder balls was tested by the single ball shear test and pull test, respectively. The failure modes of tested samples were identified by combing morphologies of fracture surfaces and force-displacement curves. The stresses were revealed and the failure explanations were assisted by the finite element analysis for the shear test of single solder ball. Findings The average strength of a smaller solder ball (e.g. 250 µm in diameter) is higher than that of a larger one (e.g. 760 µm in diameter). The strength of smaller solder balls is more highly variable with multiple reflows than larger diameters balls, where the strength increased mostly with the number of reflows. According to load-displacement curves or fracture surface morphologies, the failure modes of solder ball in the shear and pull tests can be categorized into three kinds. Originality/value The strength of solder balls will not deteriorate when the diameter of solder ball is decreased with a reflow, but a smaller solder ball has a higher failure risk after multiple reflows. The failure modes for shear and pull tests can be identified quickly by the combination of force-displacement curves and the morphologies of fracture surfaces.
Purpose This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in nano-silver paste to improve bonding strength between SiC and Ag particles and enhance high-temperature stability of bimodal nano-silver paste. The effect of sintering parameters such as sintering temperature, sintering time and the proportion of SiC particles on mechanical property and reliability of sintered bimodal nano-silver structure were investigated. Design/methodology/approach Sandwich structures consist of dummy chips and copper substrates with nickel and silver coating bonded by nano-silver paste were designed for shear testing. Shear strength testing was conducted to study the influence of SiC particles proportions on the mechanical property of sintered nano-silver joints. The reliability of the bimodal nano-silver paste was evaluated experimentally by means of shear test for samples subjected to thermal aging test at 150°C and humidity and temperature testing at 85°C and 85 per cent RH, respectively. Findings Shear strength was enhanced obviously with the increase of sintering temperature and sintering time. The maximum shear strength was achieved for nano-silver paste sintered at 260°C for 10 min. There was a negative correlation between the proportion of SiC particles and shear strength. After thermal aging testing and humidity and temperature testing for 240 h, the shear strength decreased a little. High-temperature stability and high-hydrothermal stability were improved by the addition of SiC particles. Originality/value Submicron-scale SiC particles coated with Ag were used as alternative materials to replace part of nano-silver particles to prepare bimodal nano-silver paste due to its high thermal conductivity and excellent mechanical property.
Purpose The submitted paper is mainly concerned with the cracking of blind and buried vias of printed circuit board (PCB) for smartphones which were encountered with abnormal display problems like scramble display or no display during service and had to be recalled. Design/methodology/approach To found out the root causes of this failure and dissolve this commercial dispute, comprehensive failure analysis was performed on the printed circuit board assemblies (PCBAs) and PCBs of the failed smartphone, such as macrograph and micrograph observation, chemical compositions analysis, thermal performance testing and blind via pull-off experiment, which finally helped to determine the causes. Besides that, the failure mechanisms were discussed in detail, and pertinent countermeasures were proposed point by point. Findings It was found that the PCB blind vias cracking was the main reason for the scramble display or no display of the smartphone, and the incomplete cleaning process before copper plating was the root cause of the blind vias cracking. Practical implications Achievement of this paper would not only help to provide the solid evidence for determining the responsibility of this commercial dispute but also lead to a better understanding of the failure mechanisms and prevention methods for similar failure cases of other advanced mobile phones. Originality/value Most failure analysis researches of PCBAs only focused on the unqualified products from manufacturing, while this paper addressed a failure analysis case of PCBAs products for smartphones from actual services, which was relatively rarely reported in the past.
Purpose Tin-Silver-Copper is widely accepted as the best alternative to replace Tin-Lead solders in microelectronics packaging due to their acceptable properties. However, to overcome some of the shortcomings related to its microstructure and in turn, its mechanical properties at high temperature, the addition of different elements into Tin-Silver-Copper is important for investigations. The purpose of this paper is to analyse the effect of lanthanum doping on the microstructure, microhardness and tensile properties of Tin-Silver-Copper as a function of thermal aging time for 60, 120 and 180 h at a high temperature of 150°C and at high strain rates of 25, 35 and 45/s. Design/methodology/approach The microstructure of un-doped and Lanthanum-doped Tin-Silver-Copper after different thermal aging time is examined using scanning electron microscopy followed by digital image analyses using ImageJ. Brinell hardness is used to find out the microhardness properties. The tensile tests are performed using the universal testing machine. All the investigations are done after the above selected thermal aging time at high temperature. The tensile tests of the thermally aged specimens are further investigated at high strain rates of 25, 35 and 45/s. Findings According to the microstructural examination, Tin-Silver-Copper with 0.4 Wt.% Lanthanum is found to be more sensitive at high temperature as the aging time increases which resulted in coarse microstructure due to the non-uniform distribution of intermetallic compounds. Similarly, lower values of microhardness, yield strength and ultimate tensile strength come in favours of 0.4 Wt.% Lanthanum added Tin-Silver-Copper. Furthermore, when the thermally aged tensile specimen is tested at high strains, two trends in tensile curves of both the solder alloys are noted. The trends showed that yield strength and ultimate tensile strength increase as the strain rate increase and decrease when there is an increase in thermal aging. Originality/value The addition of higher supplement (0.4 Wt.%) of Lanthanum into Tin-Silver-Copper showed a lower hardness value, yield strength, ultimate tensile strength, ductility, toughness and fatigue in comparison to un-doped Tin-Silver-Copper at high temperature and at high strain rates. Finally, simplified material property models with minimum error are developed which will help when the actual test data are not available.
Purpose This paper aims to consider the practical production environment of electronics manufacturing industry firms, and the large quantities of information collected on machine processes, testing data and production reports, while simultaneously taking into account the properties of the processing environment, in conducting analysis to obtain valuable information. Design/methodology/approach This research constructs a prediction model of the circuit board assembly process yield. A decision tree is used to extract the key attributes. The authors also integrate association rules to determine the relevance of key attributes of undesirable phenomena. Findings The results assure the successful application of the methodology by reconfirming the rules for solder skip and short circuit occurrence and their causes. Originality/value Measures for improvement are recommended, production parameters determined and debugging suggestions made to improve the process yield when the new process is implemented.
Purpose The purpose of this paper is to study the mechanism of electrochemical dissolution of SAC305 solder in mild acid solution. Design/methodology/approach Cyclic voltammetry (CV) was used to obtain electrochemical dissolution peaks followed by chronoamperometery (CA) to investigate the dissolution mechanism at each peak. Structural and microstructural characterization was performed to verify the CA analysis. Potentiodynamic polarization was performed afterwards to determine the corrosion potential of every phase in SAC305. Findings The early cycle of CV exhibits only dissolution peaks of β-Sn until intermetallic compound (IMC) peaks emerged at a later cycle. CA performed for 24 h at selected potentials reveals that β-Sn can be removed completely from the sample without disrupting the IMC network at a suitable potential. This was later verified by XRD and SEM. Potentiodynamic polarization determined the corrosion potential of IMC as −0.36 V. Originality/value The mechanism of anodic dissolution of SAC305 was studied and proposed.
Purpose The purpose of this paper is to investigate the effect of nickel-plated graphene (Ni-GNS) on the microstructure and mechanical properties of 96.5Sn3Ag0.5Cu (SAC305) lead-free solder joints before and after an electro-migration (EM) experiment. Design/methodology/approach In this paper, SAC305 solder alloy doped with 0.1 Wt.% Ni-GNS was prepared via the powder metallurgy method. A U-shaped sample structure was also designed and prepared to conduct an EM experiment. The EM experiment was carried out with a current density of 1.5 × 104 A/cm2. The microstructural and mechanical evolutions of both solder joints under EM stressing were comparatively studied using SEM and nanoindentation. Findings The experimental results showed that for the SAC305 solder, the interfacial intermetallic compounds (IMC) formulated a protrusion with an average height of 0.42 µm at the anode after 360 h of EM stressing; however, despite this, the surface of the composite solder joint was relatively smooth. During the stressing period, the interfacial IMC on the anode side of the plain SAC305 solder showed a continuous increasing trend, while the IMC at the cathode presented a decreasing trend for its thickness as the stressing time increased; after 360 h of stressing, some cracks and voids had formed on the cathode side. For the SAC305/ Ni-GNS composite solder, a continuous increase in the thickness of the interfacial IMC was found on both the anode and cathode side; the growth rate of the interfacial IMC at the anode was higher than that at the cathode. The nanoindentation results showed that the hardness of the SAC305 solder joint presented a gradient distribution after EM stressing, while the hardness data showed a relatively homogeneous distribution in the SAC305/ Ni-GNS solder joint. Originality/value The experimental results showed that the Ni-GNS reinforcement could effectively mitigate the EM behavior in solder joints under high current stressing. Specifically, the Ni particles that plated the graphene sheets can work as a fixing agent to suppress the diffusion and migration of Sn and Cu atoms by forming Sn-Cu-Ni IMC. In addition, the nanoidentation results also indicated that the addition of the Ni-GNS reinforcement was very helpful in maintaining the mechanical stability of the solder joint. These findings have provided a theoretical and experimental basis for the practical application of this novel composite solder with high current densities.
Purpose This paper aims to study the features of microstructures and mechanical properties of the joints which were produced by transient liquid phase method. The difference between phases in bonding region identified through metallography pictures and applying hardness and shear strength tests. Design/methodology/approach The bonding process was carried out at a temperature of 300°C for time durations ranging from 15 to 120 min. The scanning electron microscopy equipped with energy dispersive spectroscopy system and optical microscopy were used to examine microstructural characteristics, and mechanical properties of the joints were studied by applying microhardness and shear tests. The shear tests were conducted by a shear fixture which was mounted on the tensile machine. Findings The intermetallic compounds of the Cu6Sn5 −η and the Cu3Sn-ε were formed simultaneously in the bonding interface. Although the η-phase, which exhibits scallop-shaped morphology, grows very quickly, upon completion of the isothermal solidification stage, it turns into the ε-phase. The hardness of the bonding interface is significantly higher than that of the substrate. The shear results show that once the bonding process is complete, brittle fracture occurs. Moreover, a greater decrease in strength was observed when the ε-phase is the only phase in the bonding region. Originality/value The hardness number of the η-phase is higher than that of the ε-phase. The hardness numbers of the η-phase and the ε-phase are 894 and 689 HV, respectively. The mean shear strength values of the samples that were bonded at 300 °C for 15, 60 and 120 min were 11.7, 9.5 and 5.4 MPa, respectively.
Purpose The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new Au/Sn-5Sb-1Cu-0.1Ni-0.1Ag/(Au)Ni solder joint during the high temperature aging. Design/methodology/approach Sn-5Sb-1Cu-0.1Ni-0.1Ag solder balls (500 µm in diameter), heat sink with structure of 7.4 µm Au layer on 5 µm Ni-plated Cu alloy and Si chip with 5.16 µm plated Au were used to fabricate micro-solder joints. The joints were performed in a furnace at 150°C for 150, 250 and 350 h aging. The samples were polished and deep etched before analyzed by metallographic microscope and scanning electron microscopy, respectively. Energy dispersive x-ray spectroscopy was used to identify the composition of the IMCs. Findings ß-(Au,Ni,Cu)10Sn phase is formed during the soldering process. The IMCs evolution has two periods during the aging. The first is the ξ-(Au,Ni,Cu)5Sn, ξ-(Au,Cu)5Sn and δ-AuSn were formed and grew to form a full-compound joint after about 150 h aging. The second is the conversion of the full-compound joint. The IMCs converted to ξ′ phase when the aging time extends to 250 h, and transformed to ε-(Au,Ni,Cu)Sn2 and η-(Au,Ni,Cu)Sn4 after 350 h aging. The thicker gold layer and thinner solder joint can promote the growth of the IMCs. ß-(Au,Ni,Cu)10Sn emerged in Au/SnSb-CuNiAg/(Au)Ni in this research, which is not usually found. Originality/value The results in this study have a significant meaning for the application of the new Sn-5Sb-1Cu-0.1Ni-0.1Ag in harsh conditions.
Purpose The purpose of this paper is to investigate and minimize the printing-related defects in the surface mount assembly (SMA) process. Design/methodology/approach This paper uses an experimental approach to explore process parameter and printing defects during the SMA process. Increasing printing performance, various practices of solder paste (Ag3.0/Cu0.5/Sn) storage and handling are suggested. Lopsided paste problem is studied by varying squeegee pressure and the results are presented. Unfilled pads problems are observed for ball grid array (BGA) and quad flat package (QFP) which is mitigated by proper force tuning. In this paper, a comparative study is conducted which evaluates the manifestation of printing offset due to low-grade stencil. The input/output (I/O) boards were oxidized when the relative humidity was maintained beyond 70 per cent for more than 8 h. This pad oxidation problem is overcome by proper printed circuit board (PCB) handling procedures. When the unoptimized line is used, the paste wedged in the stencil and influences the performance of the screen printer, for this reason, an optimized line is proposed that minimize the printing defects. Findings The key findings are as follows: in the SMA process, printing quality is directly associated with solder paste quality. Experimentally, it is observed that a considerable variance in solder deposition occurred when the front and rear squeegee have different configurations. High-grade and unsoiled stencil results in superior paste deposition and less distinction. Insufficient solder paste and bridge problems also occur in printing when PCB pads are oxidized. Optimized line resolves solder paste clog issues, associated with stencil’s aperture. The cooling arrangement on the conveyor, after reflow, explicates hot jig problem. Control environmental conditions minimized static charges and printing defects. Originality/value The preceding studies emphasis mostly on the squeegee pressure, while other important parameters are not completely investigated. Moreover, it is very imperative to concurrently measure all parameters while varying the environmental conditions. This study highlights and provides an experimental approach to various PCB printing defects, and a comparative study has been conducted that concurrently measure all process parameters.
PurposeCrack and stress distribution on dies are key issues for the pressure-assisted sintering bonding of power modules. The purpose of this research is to build a relationship among stress distributions, sintering sequences and sintering pressures during the sintering processes. Design/methodology/approachThree sintering sequences, S(a), S(b) and S(c), have been designed for the double-side assembly of power module in this paper. Experiments and finite element method (FEM) analysis are conducted to investigate the crack and stress distribution. FindingsThe sintering sequence had significant effects on the crack generation in the chips during the sintering process under 30-MPa pressure. The simulation results revealed that the module sintered by S(a) showed lower chip stress than those by the other two sintering sequences under 30 MPa. In contrast, the chip stress is the highest when the sintering sequence follows S(b). The simulation results explained the crack generation and prolongation in the experiments. S(a) was recommended as the best sintering sequence because of the lowest chip stress and highest yield rate. Originality/valueThis study investigated the stress distributions of the double-side sintered power modules under different sintering pressures. Based on the results of experiments and FEM analysis, the best sintering sequence design is provided under various sintering pressures.