The canonical example of a quantum-mechanical two-level system is spin. The simplest picture of spin is a magnetic moment pointing up or down. The full quantum properties of spin become apparent in phenomena such as superpositions of spin states, entanglement among spins, and quantum measurements. Many of these phenomena have been observed in experiments performed on ensembles of particles with spin. Only in recent years have systems been realized in which individual electrons can be trapped and their quantum properties can be studied, thus avoiding unnecessary ensemble averaging. This review describes experiments performed with quantum dots, which are nanometer-scale boxes defined in a semiconductor host material. Quantum dots can hold a precise but tunable number of electron spins starting with 0, 1, 2, etc. Electrical contacts can be made for charge transport measurements and electrostatic gates can be used for controlling the dot potential. This system provides virtually full control over individual electrons. This new, enabling technology is stimulating research on individual spins. This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for (1) the rotation of an electron spin into a superposition of up and down, (2) the measurement of the quantum state of an individual spin, and (3) the control of the interaction between two neighboring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins (i.e., single spintronics).

A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part, experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.

This article reviews the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator. The basic electronic structure of cuprates is reviewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott insulator as a starting point. A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott insulator (the underdoped region) where the behavior is most anomalous. The normal state in this region exhibits pseudogap phenomenon. In contrast, the quasiparticles in the superconducting state are well defined and behave according to theory. This review introduces Anderson's idea of the resonating valence bond and argues that it gives a qualitative account of the data. The importance of phase fluctuations is discussed, leading to a theory of the transition temperature, which is driven by phase fluctuations and the thermal excitation of quasiparticles. However, an argument is made that phase fluctuations can only explain pseudogap phenomenology over a limited temperature range, and some additional physics is needed to explain the onset of singlet formation at very high temperatures. A description of the numerical method of the projected wave function is presented, which turns out to be a very useful technique for implementing the strong correlation constraint and leads to a number of predictions which are in agreement with experiments. The remainder of the paper deals with an analytic treatment of the t-J model, with the goal of putting the resonating valence bond idea on a more formal footing. The slave boson is introduced to enforce the constraint againt double occupation and it is shown that the implementation of this local constraint leads naturally to gauge theories. This review follows the historical order by first examining the U(1) formulation of the gauge theory. Some inadequacies of this formulation for underdoping are discussed, leading to the SU(2) formulation. Here follows a rather thorough discussion of the role of gauge theory in describing the spin-liquid phase of the undoped Mott insulator. The difference between the high-energy gauge group in the formulation of the problem versus the low-energy gauge group, which is an emergent phenomenon, is emphasized. Several possible routes to deconfinement based on different emergent gauge groups are discussed, which leads to the physics of fractionalization and spin-charge separation. Next the extension of the SU(2) formulation to nonzero doping is described with a focus on a part of the mean-field phase diagram called the staggered flux liquid phase. It will be shown that inclusion of the gauge fluctuation provides a reasonable description of the pseudogap phase. It is emphasized that d-wave superconductivity can be considered as evolving from a stable U(1) spin liquid. These ideas are applied to the high-T-c cuprates, and their implications for the vortex structure and the phase diagram are discussed. A possible test of the topological structure of the pseudogap phase is described.

A review of the basic ideas and techniques of the spectral density-functional theory is presented. This method is currently used for electronic structure calculations of strongly correlated materials where the one-electron description breaks down. The method is illustrated with several examples where interactions play a dominant role: systems near metal-insulator transitions, systems near volume collapse transitions, and systems with local moments.

The body of research on (III,Mn)V diluted magnetic semiconductors (DMSs) initiated during the 1990s has concentrated on three major fronts: (i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, (ii) the materials science of growth and defects, and (iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and postgrowth-treatment techniques have played a central role in the field, often pushing the limits of dilute Mn-moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. This review focuses on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magnetotransport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. Conclusions are arrived at based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment. The applicability of ferromagnetic semiconductors in microelectronic technologies requires increasing Curie temperatures from the current record of 173 K in (Ga,Mn)As epilayers to above room temperature. The issue of whether or not this is a realistic expectation for (III,Mn)V DMSs is a central question in the field and motivates many of the analyses presented in this review.

The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of 10(18) W/cm(2), lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of 10(20) eV. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

Magnetically tunable Feshbach resonances were employed to associate cold diatomic molecules in a series of experiments involving both atomic Bose and two-spin-component Fermi gases. This review illustrates theoretical concepts of both the particular nature of the highly excited Feshbach molecules produced and the techniques for their association from unbound atom pairs. Coupled-channels theory provides a rigorous formulation of the microscopic physics of Feshbach resonances in cold gases. Concepts of dressed versus bare energy states, universal properties of Feshbach molecules, and the classification in terms of entrance- and closed-channel-dominated resonances are introduced on the basis of practical two-channel approaches. Their significance is illustrated for several experimental observations, such as binding energies and lifetimes with respect to collisional relaxation. Molecular association and dissociation are discussed in the context of techniques involving linear magnetic-field sweeps in cold Bose and Fermi gases and pulse sequences leading to Ramsey-type interference fringes. Their descriptions in terms of Landau-Zener, two-level mean-field, as well as beyond mean-field approaches are reviewed in detail, including the associated ranges of validity.

Matter waves inside periodic potentials are well known from solid-state physics, where electrons interacting with a crystal lattice are considered. Atomic Bose-Einstein condensates inside light-induced periodic potentials (optical lattices) share many features with electrons in solids, but also with light waves in nonlinear materials and other nonlinear systems. Generally, atom-atom interactions in Bose-Einstein condensates lead to rich and interesting nonlinear effects. Furthermore, the experimental control over the parameters of the periodic potential and the condensate make it possible to enter regimes inaccessible in other systems. In this review, an introduction to the physics of ultracold bosonic atoms in optical lattices is given and an overview of the theoretical and experimental advances to date.

Tunneling spectroscopy has played a central role in the experimental verification of the microscopic theory of superconductivity in classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy and spectroscopy (STM and STS) on these compounds allowed the main difficulties to be overcome. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. The crucial efforts to gain control over the technique and to obtain reproducible results are first recalled. Then a discussion on how the STM and STS techniques have contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors is presented: the unusually large gap values and the absence of scaling with the critical temperature, the pseudogap and its relation to superconductivity, the unprecedented small size of the vortex cores and its influence on vortex matter, the unexpected electronic properties of the vortex cores, and the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states and in the vortex cores.

Recent work is reviewed in which compactifications of string and M theory are constructed in which all scalar fields (moduli) are massive, and supersymmetry is broken with a small positive cosmological constant, features needed to reproduce real world physics. In this work it is explained that there is a "landscape" of string/M theory vacua, perhaps containing many candidates for describing real world physics, and arguments are presented for and against this idea. Statistical surveys of the landscape are discussed, as well as the prospects for testable consequences of this picture, such as observable effects of moduli, constraints on early cosmology, and predictions for the scale of supersymmetry breaking.

Basic characteristics of the liquid-glass transition are reviewed, emphasizing its universality and briefly summarizing the most popular phenomenological models. Discussion is focused on a number of alternative models which one way or the other connect the fast and slow degrees of freedom of viscous liquids. It is shown that all these "elastic" models are equivalent in the simplest approximation.

Strong-field effects in laboratory and astrophysical plasmas and high intensity laser and cavity systems are considered, related to quantum electrodynamical (QED) photon-photon scattering. Current state-of-the-art laser facilities are close to reaching energy scales at which laboratory astrophysics will become possible. In such high energy density laboratory astrophysical systems, quantum electrodynamics will play a crucial role in the dynamics of plasmas and indeed the vacuum itself. Developments such as the free-electron laser may also give a means for exploring remote violent events such as supernovae in a laboratory environment. At the same time, superconducting cavities have steadily increased their quality factors, and quantum nondemolition measurements are capable of retrieving information from systems consisting of a few photons. Thus, not only will QED effects such as elastic photon-photon scattering be important in laboratory experiments, it may also be directly measurable in cavity experiments. Here implications of collective interactions between photons and photon-plasma systems are described. An overview of strong field vacuum effects is given, as formulated through the Heisenberg-Euler Lagrangian. Based on the dispersion relation for a single test photon traveling in a slowly varying background electromagnetic field, a set of equations describing the nonlinear propagation of an electromagnetic pulse on a radiation plasma is derived. The stability of the governing equations is discussed, and it is shown using numerical methods that electromagnetic pulses may collapse and split into pulse trains, as well as be trapped in a relativistic electron hole. Effects, such as the generation of novel electromagnetic modes, introduced by QED in pair plasmas is described. Applications to laser-plasma systems and astrophysical environments are also discussed.

This review presents recent developments in the understanding of how impurities influence the electronic states in the bulk properties of superconductors. The focus is on quasilocalized states in the vicinity of impurity sites in conventional and unconventional superconductors and the goal is to provide a unified framework for their description. The nonmagnetic impurity resonances in unconventional superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic impurities in conventional s-wave systems. The physics behind these states, including the quantum phase transition between screened and unscreened impurities, are reviewed and recent work on d-wave superconductors is emphasized. The bound states are seen in scanning-tunneling spectroscopy measurements on high-T-c cuprates, which are described in detail. This paper discusses very recent progress in our understanding of states coupled to impurity sites, which have their own dynamics. Also reviewed are inelastic electron-tunneling spectroscopy features that could be seen by scanning-tunneling microscopy in real space and their Fourier-transformed images and impurity resonances in the presence of an order competing with superconductivity. The last part of the review is devoted to the influence of local deviations of the impurity concentration from its average value on the density of states in s-wave superconductors. Discussed is how these fluctuations affect the density of states and it is shown that s-wave superconductors are, strictly speaking, gapless in the presence of an arbitrarily small concentration of magnetic impurities.

Photoassociation is the process in which two colliding atoms absorb a photon to form an excited molecule. The development of laser-cooling techniques for producing gases at ultracold (< 1 mK) temperatures allows photoassociation spectroscopy to be performed with very high spectral resolution. Of particular interest is the investigation of molecular states whose properties can be related, with high precision, to the properties of their constituent atoms with the "complications" of chemical binding accounted for by a few parameters. These include bound long-range or purely long-range vibrational states in which two atoms spend most or all of their time at large internuclear separations. Low-energy atomic scattering states also share this characteristic. Photoassociation techniques have made important contributions to the study of all of these. This review describes what is special about photoassociation spectroscopy at ultracold temperatures, how it is performed, and a sampling of results including the determination of scattering lengths, their control via optical Feshbach resonances, precision determinations of atomic lifetimes from molecular spectra, limits on photoassociation rates in a Bose-Einstein condensate, and briefly, production of cold molecules. Discussions are illustrated with examples on alkali-metal atoms as well as other species. Progress in the field is already past the point where this review can be exhaustive, but an introduction is provided on the capabilities of photoassociation spectroscopy and the techniques presently in use.

This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.

Granular metals are arrays of metallic particles of a size ranging usually from a few to hundreds of nanometers embedded into an insulating matrix. Metallic granules are often viewed as artificial atoms. Accordingly, granular arrays can be treated as artificial solids with programmable electronic properties. The ease of adjusting electronic properties of granular metals assures them an important role for nanotechnological applications and makes them most suitable for fundamental studies of disordered solids. This review discusses recent theoretical advances in the study of granular metals, emphasizing the interplay of disorder, quantum effects, fluctuations, and effects of confinement. These key elements are quantified by the tunneling conductance between granules g, the charging energy of a single granule E-c, the mean level spacing within a granule delta, and the mean electronic lifetime within the granule h/g delta. By tuning the coupling between granules the system can be made either a good metal for g>g(c)=(1/2 pi d)ln(E-c/delta) (d is the system dimensionality), or an insulator for g Gamma the resistivity exhibits universal logarithmic temperature behavior specific to granular materials, while at T

Granular materials are ubiquitous in our daily lives. While they have been the subject of intensive engineering research for centuries, in the last two decades granular matter has attracted significant attention from physicists. Yet despite major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradictory concepts and approaches. Various theoretical models have emerged for describing the onset of collective behavior and pattern formation in granular matter. This review surveys a number of situations in which nontrivial patterns emerge in granular systems, elucidates important distinctions between these phenomena and similar ones occurring in continuum fluids, and describes general principles and models of pattern formation in complex systems that have been successfully applied to granular systems.

The theory of inflation with single and multiple fields is reviewed paying particular attention to the dynamics of adiabatic and entropy/isocurvature perturbations which provide the primary means of testing inflationary models. The theory and phenomenology of reheating and preheating after inflation is reviewed providing a unified discussion of both the gravitational and nongravitational features of multifield inflation. In addition inflation in theories with extra dimensions and models such as the curvaton scenario and modulated reheating which provide alternative ways of generating large-scale density perturbations are covered. Finally interesting observational implications are discussed that can result from adiabatic-isocurvature correlations and non-Gaussianity.

Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?