This review covers the latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special emphasis on its practical aspects and applications in quantum-information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics is discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode-matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.

Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

This review covers important advances in recent years in the physics of thin-film ferroelectric oxides, the strongest emphasis being on those aspects particular to ferroelectrics in thin-film form. The authors introduce the current state of development in the application of ferroelectric thin films for electronic devices and discuss the physics relevant for the performance and failure of these devices. Following this the review covers the enormous progress that has been made in the first-principles computational approach to understanding ferroelectrics. The authors then discuss in detail the important role that strain plays in determining the properties of epitaxial thin ferroelectric films. Finally, this review ends with a look at the emerging possibilities for nanoscale ferroelectrics, with particular emphasis on ferroelectrics in nonconventional nanoscale geometries.

The proximity effect at superconductor-ferromagnet interfaces produces damped oscillatory behavior of the Cooper pair wave function within the ferromagnetic medium. This is analogous to the inhomogeneous superconductivity, predicted long ago by Fulde and Ferrell (P. Fulde and R. A. Ferrell, 1964, "Superconductivity in a strong spin-exchange field," Phys. Rev. 135, A550-A563), and by Larkin and Ovchinnikov (A. I. Larkin and Y. N. Ovchinnikov, 1964, "Inhomogeneous state of superconductors," Zh. Eksp. Teor. Fiz. 47, 1136-1146 [Sov. Phys. JETP 20, 762-769 (1965)]), and sought by condensed-matter experimentalists ever since. This article offers a qualitative analysis of the proximity effect in the presence of an exchange field and then provides a description of the properties of superconductor-ferromagnet heterostructures. Special attention is paid to the striking nonmonotonic dependence of the critical temperature of multilayers and bilayers on the ferromagnetic layer thickness as well as to the conditions under which "pi" Josephson junctions are realized. Recent progress in the preparation of high-quality hybrid systems has permitted the observation of many interesting experimental effects, which are also discussed. Finally, the author analyzes the phenomenon of domain-wall superconductivity and the influence of superconductivity on the magnetic structure in superconductor-ferromagnet bilayers.

Quantum information is a rapidly advancing area of interdisciplinary research. It may lead to real-world applications for communication and computation unavailable without the exploitation of quantum properties such as nonorthogonality or entanglement. This article reviews the progress in quantum information based on continuous quantum variables, with emphasis on quantum optical implementations in terms of the quadrature amplitudes of the electromagnetic field.

The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly become the method of choice for numerical studies of such systems. Its applications to the calculation of static, dynamic, and thermodynamic quantities in these systems are reviewed here. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and nonequilibrium statistical physics, and time-dependent phenomena is also discussed. This review additionally considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by the DMRG.

Synchronization phenomena in large populations of interacting elements are the subject of intense research efforts in physical, biological, chemical, and social systems. A successful approach to the problem of synchronization consists of modeling each member of the population as a phase oscillator. In this review, synchronization is analyzed in one of the most representative models of coupled phase oscillators, the Kuramoto model. A rigorous mathematical treatment, specific numerical methods, and many variations and extensions of the original model that have appeared in the last few years are presented. Relevant applications of the model in different contexts are also included.

This review considers unusual effects in superconductor-ferromagnet structures, in particular, the triplet component of the condensate generated in those systems. This component is odd in frequency and even in momentum, which makes it insensitive to nonmagnetic impurities. If the exchange field is not homogeneous in the system, the triplet component is not destroyed even by a strong exchange field and can penetrate the ferromagnet over long distances. Some other effects considered here and caused by the proximity effect are enhancement of the Josephson current due to the presence of the ferromagnet, induction of a magnetic moment in superconductors resulting in a screening of the magnetic moment, and formation of periodic magnetic structures due to the influence of the superconductor. Finally, theoretical predictions are compared with existing experiments.

The structural properties of free nanoclusters are reviewed. Special attention is paid to the interplay of energetic, thermodynamic, and kinetic factors in the explanation of cluster structures that are actually observed in experiments. The review starts with a brief summary of the experimental methods for the production of free nanoclusters and then considers theoretical and simulation issues, always discussed in close connection with the experimental results. The energetic properties are treated first, along with methods for modeling elementary constituent interactions and for global optimization on the cluster potential-energy surface. After that, a section on cluster thermodynamics follows. The discussion includes the analysis of solid-solid structural transitions and of melting, with its size dependence. The last section is devoted to the growth kinetics of free nanoclusters and treats the growth of isolated clusters and their coalescence. Several specific systems are analyzed.

This article reviews quantum cluster theories, a set of approximations for infinite lattice models which treat correlations within the cluster explicitly, and correlations at longer length scales either perturbatively or within a mean-field approximation. These methods become exact when the cluster size diverges, and most recover the corresponding mean-field approximation when the cluster size becomes 1. Although quantum cluster theories were originally developed to treat disordered systems, they have more recently been applied to the study of ordered and disordered correlated systems, which will be the focus of this review. After a brief historical review, the authors provide detailed derivations of three cluster formalisms: the cluster perturbation theory, the dynamical cluster approximation, and the cellular dynamical mean-field theory. They compare their advantages and review their applications to common models of correlated electron systems.

Gamma-ray bursts (GRB's), short and intense pulses of low-energy gamma rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. During the last decade, several space missions-BATSE (Burst and Transient Source Experiment) on the Compton Gamma-Ray Observatory, BeppoSAX and now HETE II (High-Energy Transient Explorer)-together with ground-based optical, infrared, and radio observatories have revolutionized our understanding of GRB's, showing that they are cosmological, that they are accompanied by long-lasting afterglows, and that they are associated with core-collapse supernovae. At the same time a theoretical understanding has emerged in the form of the fireball internal-external shocks model. According to this model GRB's are produced when the kinetic energy of an ultrarelativistic flow is dissipated in internal collisions. The afterglow arises when the flow is slowed down by shocks with the surrounding circumburst matter. This model has had numerous successful predictions, like the predictions of the afterglow itself, of jet breaks in the afterglow light curve, and of the optical flash that accompanies the GRB's. This review focuses on the current theoretical understanding of the physical processes believed to take place in GRB's.

This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.

Two complementary effects modify the GHz magnetization dynamics of nanoscale heterostructures of ferromagnetic and normal materials relative to those of the isolated magnetic constituents. On the one hand, a time-dependent ferromagnetic magnetization pumps a spin angular-momentum flow into adjacent materials and, on the other hand, spin angular momentum is transferred between ferromagnets by an applied bias, causing mutual torques on the magnetizations. These phenomena are manifestly nonlocal: they are governed by the entire spin-coherent region that is limited in size by spin-flip relaxation processes. This review presents recent progress in understanding the magnetization dynamics in ferromagnetic heterostructures from first principles, focusing on the role of spin pumping in layered structures. The main body of the theory is semiclassical and based on a mean-field Stoner or spin-density-functional picture, but quantum-size effects and the role of electron-electron correlations are also discussed. A growing number of experiments support the theoretical predictions. The formalism should be useful for understanding the physics and for engineering the characteristics of small devices such as magnetic random-access memory elements.

Granular materials are ubiquitous in our daily lives. While they have been the subject of intensive engineering research for centuries, in the last two decades granular matter has attracted significant attention from physicists. Yet despite major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradictory concepts and approaches. Various theoretical models have emerged for describing the onset of collective behavior and pattern formation in granular matter. This review surveys a number of situations in which nontrivial patterns emerge in granular systems, elucidates important distinctions between these phenomena and similar ones occurring in continuum fluids, and describes general principles and models of pattern formation in complex systems that have been successfully applied to granular systems.

The theory of inflation with single and multiple fields is reviewed paying particular attention to the dynamics of adiabatic and entropy/isocurvature perturbations which provide the primary means of testing inflationary models. The theory and phenomenology of reheating and preheating after inflation is reviewed providing a unified discussion of both the gravitational and nongravitational features of multifield inflation. In addition inflation in theories with extra dimensions and models such as the curvaton scenario and modulated reheating which provide alternative ways of generating large-scale density perturbations are covered. Finally interesting observational implications are discussed that can result from adiabatic-isocurvature correlations and non-Gaussianity.

The last decade has witnessed both quantitative and qualitative progress in shell-model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10(9) using the Lanczos tridiagonal construction, whose formal and numerical aspects are analyzed in this review. In addition, many new approximation methods have been developed in order to overcome the dimensionality limitations. New effective nucleon-nucleon interactions have been constructed that contain both two- and three-body contributions. The former are derived from realistic potentials (i.e., potentials consistent with two-nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. The present review concentrates on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the shell model to describe simultaneously all the manifestations of the nuclear dynamics, either single-particle or collective in nature. The review also treats in some detail the problems associated with rotational motion, the origin of quenching of the Gamow-Teller transitions, double-beta decays, the effect of isospin nonconserving nuclear forces, and the specificities of neutron-rich nuclei. Many other calculations-which appear to have "merely" spectroscopic interest-are touched upon briefly, although the authors are fully aware that much of the credibility of the shell model rests on them.

This paper gives the 2002 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the subset of constants on which the complete 2002 set of recommended values is based. Two noteworthy additions in the 2002 adjustment are recommended values for the bound-state rms charge radii of the proton and deuteron and tests of the exactness of the Josephson and quantum-Hall-effect relations K-J=2e/h and R-K=h/e(2), where K-J and R-K are the Josephson and von Klitzing constants, respectively, e is the elementary charge, and h is the Planck constant. The 2002 set replaces the previously recommended 1998 CODATA set. The 2002 adjustment takes into account the data considered in the 1998 adjustment as well as the data that became available between 31 December 1998, the closing date of that adjustment, and 31 December 2002, the closing date of the new adjustment. The differences between the 2002 and 1998 recommended values compared to the uncertainties of the latter are generally not unreasonable. The new CODATA set of recommended values may also be found on the World Wide Web at physics.nist.gov/constants.

The underlying physics of the application of low-temperature, low-pressure reactive plasmas in various nanoassembly processes is described. From the viewpoint of the "cause and effect" approach, this Colloquium focuses on the benefits and challenges of using plasma-based systems in nanofabrication of nanostructured silicon films, low-dimensional semiconducting quantum structures, ordered carbon nanotip arrays, highly crystalline TiO2 coatings, and nanostructured hydroxyapatite bioceramics. Other examples and future prospects of plasma-aided nanofabrication are also discussed.