The indiscriminate use of pesticides in agriculture and public health campaigns has been associated with an increase of oxidative stress and DNA damage, resulting in health outcomes. Some defense mechanisms against free radical‐induced oxidative damage include the antioxidant enzyme systems. The aim of this study was to determine the levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and the relationship of antioxidant enzyme levels with DNA damage among sprayers (workers) occupationally exposed to pesticides. The determinations of MDA and antioxidant enzymes were performed spectrophotometrically. The genotoxic effects were evaluated using the comet assay. The results showed a marginally significant decrease in SOD and CAT activities in the high exposure group compared to the control group. For MDA, statistically significant differences were found among people working long term vs. those working temporarily (P = 0.02) as sprayers. In the moderate exposure group, a positive correlation was observed between MDA levels and GPx activity. In the high exposure group, a negative correlation was observed between GR and CAT activities, and between MDA levels and GPx activities. Furthermore, in the high exposure group, a positive correlation between DNA damage parameters and MDA levels was observed. The results suggest an important role of antioxidant enzymes for the protection of DNA damage caused by occupational exposure to pesticides.
Fine particulate matter (PM2.5) is a major component of air pollutions that are closely associated with increased risk of lung cancer. However, the role of PM2.5 in the etiology of lung cancer is largely unknown. In this study, we performed acute (24 hours) and chronic (five passages) exposure models to investigate the carcinogenetic mechanisms of PM2.5 by targeting the induction of epithelial‐mesenchymal transition (EMT) and cancer stem cells (CSC) properties in human non‐small cell lung cancer cell line A549. We found that both acute and chronic PM2.5 exposure enhanced cell migration and invasion, decreased mRNA expression of epithelial markers and increased mRNA expression of mesenchymal markers. Chronic PM2.5 exposure further induced notable EMT morphology and CSC properties, indicating the developing process of cell malignant behaviors from acute to chronic PM2.5 exposure. CSC properties induced by chronic PM2.5 exposure characterized with increased cell‐surface markers (CD44, ABCG2), self‐renewal genes (SOX2 and OCT4), side population cells and neoplastic capacity. Furthermore, the levels of three stemness‐associated microRNAs, Let‐7a, miR‐16 and miR‐34a, were found to be significantly downregulated by chronic PM2.5 exposure, with microarray data analysis from TCGA database showing their lower expression in human lung adenocarcinoma tissues than that in the adjacent normal lung tissues. These data revealed that the induction of EMT and CSC properties were involved in the lung cancer risk of PM2.5, and implicated CSC properties and related microRNAs as possible biomarkers for carcinogenicity prediction of PM2.5.
Delphinidin is major anthocyanidin that is extracted from many pigmented fruits and vegetables. This substance has anti‐oxidant, anti‐inflammatory, anti‐angiogenic, and anti‐cancer properties. In addition, delphinidin strongly suppresses the migration and invasion of various cancer cells during tumorigenesis. Although delphinidin has anti‐cancer effects, little is known about its functional roles in osteosarcoma (OS). For these reasons, we have demonstrated the effects of delphinidin on OS cell lines. The effects of delphinidin on cell viability and growth of OS cells were assessed using the MTT assay and colony formation assays. Hoechst staining indicated that the delphinidin‐treated OS cells were undergoing apoptosis. Flow cytometry, confocal microscopy, and a western blot analysis also indicated evidence of apoptosis. Inhibition of cell migration and invasion was found to be associated with epithelial‐to‐mesenchymal transition (EMT), observed by using a wound healing assay, an invasion assay, and a western blot analysis. Furthermore, delphinidin treatment resulted in a profound reduction of phosphorylated forms of ERK and p38. These findings demonstrate that delphinidin treatment suppressed EMT through the mitogen‐activated protein kinase (MAPK) signaling pathway in OS cell lines. Taken together, our results suggest that delphinidin strongly inhibits cell proliferation and induces apoptosis. Delphinidin treatment also suppresses cell migration and prevents EMT via the MAPK‐signaling pathway in OS cell lines. For these reasons, delphinidin has anti‐cancer effects and can suppress metastasis in OS cell lines, and it might be worth using as an OS therapeutic agent.
The development of agricultural activities coincides with the increased use of pesticides to control pests, which can also be harmful to nontarget insects such as bees. Thus, the goal of this work was assess the toxic effects of thiamethoxam on newly emerged worker bees of Apis mellifera (africanized honeybee-AHB). Initially, we determined that the lethal concentration 50 (LC50) of thiamethoxam was 4.28 ng a.i./mu L of diet. To determine the lethal time 50 (LT50), a survival assay was conducted using diets containing sublethal doses of thiamethoxam equal to 1/10 and 1/100 of the LC50. The group of bees exposed to 1/10 of the LC50 had a 41.2% reduction of lifespan. When AHB samples were analyzed by morphological technique we found the presence of condensed cells in the mushroom bodies and optical lobes in exposed honeybees. Through Xylidine Ponceau technique, we found cells which stained more intensely in groups exposed to thiamethoxam. The digestive and regenerative cells of the midgut from exposed bees also showed morphological and histochemical alterations, like cytoplasm vacuolization, increased apocrine secretion and increased cell elimination. Thus, intoxication with a sublethal doses of thiamethoxam can cause impairment in the brain and midgut of AHB and contribute to the honeybee lifespan reduction. (C) 2013 Wiley Periodicals, Inc.
Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate-coated AgNPs reduced cell viability in a dose-dependent manner. The IC50 values of silver ions and citrate-coated AgNPs were 0.5 and 50 mg L-1, respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. (C) 2014 Wiley Periodicals, Inc.
Oral cancer is one of the cancer‐related diseases in human populations and its incidence rates are rising worldwide. Fisetin, a flavonoid from natural products, has been shown to exhibit anticancer activities in many human cancer cell lines but the molecular mechanism of fisetin‐induced apoptosis in human oral cancer cells is still unclear; thus, in this study, we investigated fisetin‐induced cell death and associated signal pathways on human oral cancer SCC‐4 cells in vitro. We examined cell morphological changes, total viable cells, and cell cycle distribution by phase contrast microscopy and flow cytometry assays. Reactive oxygen species (ROS), Ca2+, mitochondria membrane potential (ΔΨm), and caspase‐8, ‐9, and ‐3 activities were also measured by flow cytometer. Results indicate that fisetin induced cell death through the cell morphological changes, caused G2/M phase arrest, induction of apoptosis, promoted ROS and Ca2+ production, and decreased the level of ΔΨm and increased caspase‐3, ‐8, and ‐9 activities in SCC‐4 cells. DAPI staining and DNA gel electrophoresis were also used to confirm fisetin‐induced cell apoptosis in SCC‐4 cells. Western blotting also found out that Fisetin increased the proapoptotic proteins such as Bax and Bid and decreased the antiapoptotic proteins such as Bcl‐2. Furthermore, results also showed that Fisetin increased the cytochrome c, AIF, and Endo G release from mitochondria in SCC‐4 cells. We also used ATF‐6α, ATF‐6β, GADD153, and GRP78 which indicated that fisetin induced cell death through ER stress. Based on those observations, we suggest that fisetin induced cell apoptosis through ER stress, mitochondria‐, and caspase‐dependent pathways.
Casticin, a polymethoxyflavone, is one of the major active components obtained from Fructus viticis, which have been shown to have anticancer activities including induce cell apoptosis in human cancer cells. The aim of this study was to investigate the molecular mechanisms by which casticin inhibits cell migration and invasion of mouse melanoma B16F10 cells. Cell viability was examined by MTT assay and the results indicated that casticin decreased the total percentages of viable cells in dose‐dependent manners. Casticin affected cell migration and invasion in B16F10 cells were examined by wound healing mobility assay and Boyden chamber migration and invasion assay and results indicated that casticin inhibited cell migration and invasion in dose‐dependent manners. Western blotting was used to examine the protein expression of B16F10 cells after exposed to casticin and the results showed that casticin decreased the expressions of MMP‐9, MMP‐2, MMP‐1, FAK, 14‐3‐3, GRB2, Akt, NF‐κB p65, SOS‐1, p‐EGFR, p‐JNK 1/2, uPA, and Rho A in B16F10 cells. Furthermore, cDNA microarray assay was used to show that casticin affected associated gene expression of cell migration and invasion and the results indicated that casticin affected some of the gene expression such as increased SCN1B (cell adhesion molecule 1) and TIMP2 (TIMP metallopeptidase inhibitor 2) and decreased NDUFS4 (NADH dehydrogenase (ubiquinone) Fe‐S protein4), VEGFA (vascular endothelial growth factor A), and DDIT3 (DNA‐damage‐inducible transcript 3) which associated cell migration and invasion in B16F10 cells. Based on those observations, we suggest that casticin could be used as a novel anticancer metastasis of melanoma cancer in the future.
Halloysite (Al2Si2O5(OH)4·nH2O) nanotubes (HNTs) are natural clay materials and widely applied in many fields due to their natural hollow tubular structures. Many in vitro studies indicate that HNTs exhibit a high level of biocompatibility, however the in vivo toxicity of HNTs remains unclear. The objective of this study was to assess the hepatic toxicity of the purified HNTs in mice via oral route. The purified HNTs were orally administered to mice at 5, 50, and 300 mg/kg body weight (BW) every day for 30 days. Oral administration of HNTs stimulated the growth of the mice at the low dose (5 mg/kg BW) with no liver toxicity, but inhibited the growth of the mice at the middle (50 mg/kg BW) and high (300 mg/kg BW) doses. In addition, oral administration of HNTs at the high dose caused Al accumulation in the liver but had no marked effect on the Si content in the organ. The Al accumulation caused significant oxidative stress in the liver, which induced hepatic dysfunction and histopathologic changes. These findings demonstrated that Al accumulation‐induced oxidative stress played an important role in the oral HNTs‐caused liver injury.
Graphene oxide (GO) has emerged as the worldwide promising candidate for biomedical application, such as for drug delivery, bio‐sensing and anti‐cancer therapy. This study was focused on the zebrafish and RAW264.7 cell line as in vivo and in vitro models to assess the potential developmental neurotoxicity and immunotoxicity of GO. No obvious acute developmental toxicity was observed upon treatments with 0.01, 0.1, and 1 μg/mL GO for five consecutive days. However, decreased hatching rate, increased malformation rate, heart beat rate and hypoactivity of locomotor behavior were detected when exposed to 10 μg/mL GO. Also, RT‐PCR analysis revealed that expressions of genes related to the nervous system were up‐regulated. The potential risk of GO for developmental neurotoxicity may be ascribed to the high level of oxidative stress induced by high concentration of GO. Most importantly, the mRNA levels of immune response associated genes, such as interleukin‐6 (IL‐6), interleukin‐8 (IL‐8), tumor necrosis factor‐α (TNFα), interferon‐γ (IFN‐γ) were significantly increased under environmental concentration exposure. The activation of pro‐inflammatory immune response was also observed in macrophage cell line. Taken together, our results demonstrated that immunotoxicity is a sensitive indicator for assessment of bio‐compatibility of GO.