National Science Library, Chinese Academy of Sciences
  登录 机构网站 ENGLISH

期刊名称: IEEE Access
Volume:4    Page:1518-1547

Underwater Optical Wireless Communication期刊论文

作者: Kaushal Hemani Kaddoum Georges

页码: 1518-1547
被引频次: 162
期刊名称: IEEE Access
ISSN: 2169-3536
语言: English
摘要: Underwater wireless information transfer is of great interest to the military, industry, and the scientific community, as it plays an important role in tactical surveillance, pollution monitoring, oil control and maintenance, offshore explorations, climate change monitoring, and oceanography research. In order to facilitate all these activities, there is an increase in the number of unmanned vehicles or devices deployed underwater, which require high bandwidth and high capacity for information transfer underwater. Although tremendous progress has been made in the field of acoustic communication underwater, however, it is limited by bandwidth. All this has led to the proliferation of underwater optical wireless communication (UOWC), as it provides higher data rates than the traditional acoustic communication systems with significantly lower power consumption and simpler computational complexities for short-range wireless links. UOWC has many potential applications ranging from deep oceans to coastal waters. However, the biggest challenge for underwater wireless communication originates from the fundamental characteristics of ocean or sea water; addressing these challenges requires a thorough understanding of complex physio-chemical biological systems. In this paper, the main focus is to understand the feasibility and the reliability of high data rate underwater optical links due to various propagation phenomena that impact the performance of the system. This paper provides an exhaustive overview of recent advances in UOWC. Channel characterization, modulation schemes, coding techniques, and various sources of noise which are specific to UOWC are discussed. This paper not only provides exhaustive research in underwater optical communication but also aims to provide the development of new ideas that would help in the growth of future underwater communication. A hybrid approach to an acousto-optic communication system is presented that complements the existing acoustic system, resulting in high data rates, low latency, and an energy-efficient system.
相关主题: Acoustic communication, Underwater communication, Oceans, Underwater optical wireless, hybrid optical-acoustic system, visible light, Bandwidth allocation, Wireless communication, Radio frequency, optical beam propagation, Modulation, Optical fiber communication, modulation and coding, radio frequency, acoustic communication, SYSTEM, LIGHT-SCATTERING, COMPUTER SCIENCE, INFORMATION SYSTEMS, BEAM-SPREAD FUNCTION, TELECOMMUNICATIONS, BIT ERROR RATE, ENGINEERING, ELECTRICAL & ELECTRONIC, OFDM SIGNALS, LASER-BEAM, OCEANIC TURBULENCE, HENYEY-GREENSTEIN, CHANNEL ESTIMATION, PROPAGATION,






在线获取原文 原文传递 详细信息 图书在架状态 图书馆际互借 问图书馆员


图书馆开放时间 图书馆位置 借阅要求 您在使用中发现的任何错误,都可以向我们 【报告错误】,非常感谢!